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A theoretical study has been made of an experiment by Tritton & Zarraga (1967) 
in which convective motions were generated in a horizontal layer of water (cooled 
from above) by the application of uniform heating. The marginal stability prob- 
lem for such a layer is solved, and a critical Rayleigh number of 2772 is obtained, 
a t  which patterns of wave-number 2-63 times the reciprocal depth of the layer 
are marginally stable. 

The remainder of the paper is devoted to the finite amplitude convection which 
ensues when the Rayleigh number, R, exceeds 2772. The theory is approximate, 
the basic simplification being that, to an adequate approximation, Fourier de- 
compositions of the convective motions in the horizontal (x, y) directions can be 
represented by their dominant (planform) terms alone. A discussion is given of 
this hypothesis, with illustrations drawn from the (better studied) BBnard 
situation of convection in a layer heated below, cooled from above, and contain- 
ing no heat sources. The hypothesis is then used to obtain ‘mean-field equations ’ 
for the convection. These admit solutions of at least three distinct forms: rolls, 
hexagons with upward flow at their centres, and hexagons with downward flow 
at their centres. Using the hypothesis again, the stability of these three solutions 
is examined. It is shown that, for all R, a (neutrally) stable form of convection 
exists in the form of rolls. The wave-number of this pattern increases gradually 
with R. This solution is, in all respects, independent of Prandtl number. It is 
found, numerically, that the hexagons with upward motions in their centres are 
unstable, but that the hexagons with downward motions at their centres are 
completely stable, provided R exceeds a critical value (which depends on Prandtl 
number, P, and which for water is about 3R,), and provided the wave-number of 
the pattern lies within certain limits dependent on R and P. 

1. Introduction 
In  the first paper with this title, Tritton & Zarraga (1967) reported the results 

of qualitative experiments on convection in a horizontal layer of fluid cooled 
from above, thermally insulated from below, and heated nearly uniformly by 
electrolytic currents from within. Two striking results emerged. First, the cell 
structure was, for moderate Rayleigh numbers, R, predominantly hexagonal 
with motion downwards at the centre of each cell. Secondly, the horizontal scale 
of the convection pattern grew larger as R was increased above its critical value, 

3 Fluid Mech. 30 



34 P.  H .  Roberts 

R,. This paper represents a preliminary theoretical attempt to answer these 
experimental challenges, and, at  the same time, to throw more light on the ad- 
vantages and limitations of an approximate theory of finite amplitude convection 
(Roberts 1966; this paper will henceforward be referred to as Paper I). 

The steady finite amplitude convection that occurs for R > R, will be studied 
by a variational method due to Glansdorff & Prigogine (1964). In  selecting trial 
functions for this method, we suppose that the structure of the convection is, in 
its horizontal Fourier (x, y) structure, identical to that which occurs at  marginal 
convection. In  place of the partial differential equations in x, y and z, we obtain 
ordinary differential equations in z, the vertical co-ordinate. These, in the case 
of convection in rolls, are identical with the so-called ‘mean-field equations’, 
and we shall so term them here. The stability of finite amplitude solutions may 
also be examined by the variational methods of Prigogine & Glansdorff (1965). 
The choice of a similar simple trial function for the perturbation again results in 
ordinary differential equations for the normal modes. 

Quite apart from the fact that these mean-field equations (and those governing 
the stability of their solutions) are simple to interpret, they can be solved with 
comparative ease.? It is important, therefore, to gain experience of their reli- 
ability and their limitations. One may feel that, although they provide a reason- 
able way of dealing with steady convection, they may be too gross to master the 
subtleties raised by questions pertaining to the preferred mode. It is, however, 
worth recording that, when applied to the classical BBnard situation,$ the method 
successfully predicted that, if the changes of the physical constants (such as 
viscosity) with temperature are negligible, the preferred mode is, at  least for small 
R, in rolls and not hexagons (see Paper I, p. 147; see also Rossby 1966 and 
Somerscales & Dropkin 1966). It is also clearly of some interest to know whether 
we can use the method to account for Tritton & Zarraga’s results. The answer 
appears to be that it cannot do so in all respects. It agrees with the experiments in 
the sense that hexagons with upward motions at their centres are ruled out, and 
in the sense that hexagons with downward motions a t  their centres are stable, 
provided R is sufficiently large ( >  8750, for water). It conflicts with the experi- 
ments in the sense that it does not account for the decrease in wave-number, a, 
of the pattern that Tritton & Zarraga observe when R is increased; indeed, on 
the theory presented here, hexagonal patterns for their values of u should be un- 
stable (though not violently). 

Before concluding that the present approximation is inadequate because it 
fails to predict the cell sizes correctly, we should consider an alternative possi- 
bility: the basic model (cf. $ 2  below) may itself be an inadequate replica of the 
experimental situation. Since the electrical resistivity, s, of the working fluid 

t For example, in $ 4  below, we report results derived, to an accuracy of 1 part in 103, 
for the solution of the full partial differential equations for BBnard convection in rolls. 
This absorbed some 20 h of KDF 9 computer time. The corresponding solution of the mean- 
field equations, to an accuracy of 1 in log, took only 20 min. 

3 That is, convection in a layer heated from below, cooled from above, in the absence of 
internal heat sources. In  the following work we will, for brevity, always refer to this as 
‘classical BBnard convection ’ when we wish to distinguish it from the Tritton-Zarraga 
situation. 
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depends on temperature, T, the uniformity of heating, presupposed in the theory, 
was not realised in the experiments. It is readily shown that, if this effect is in- 
cluded, the critical Rayleigh number is changed by the order of 

E = (yd2/K)(&/SdT),  

where d is the depth of the layer, K is the thermal diffusivity, and y is the mean rate 
at which the temperature of the layer would rise in the absence of heat conduction. 
Moreover, a preferred direction is introduced, that of the electric current heating 
the fluid. There is, for example, a difference of order E in the Rayleigh number for 
rolls aligned with the current and that for rolls perpendicular to it. The value of 
E in the experiments appears to be about 10-5R, and we feel confident that its 
effect on the structure of the finite amplitude solutions would be too small to be 
felt. For experimental corroboration, we observe that there was no evidence of a 
preferred horizontal direction in Tritton & Zarraga’s observations. Further, the 
question of the sense of motion within hexagonal cells appears to be associated 
with the gross asymmetry of the layer, and this is present even if E = 0. It seems 
unlikely, then, that a small finite value of E would affect the conclusion. On the 
other hand, the question of the preferred cell size is far more subtle, and it is not 
inconceivable that the E effect would make itself felt. It would, however, be re- 
markable if it  could resolve the discrepancy noted above. Other differences be- 
tween theory and experiment arise from the electromagnetic forces absent in 
the former, but present in the latter. As Tritton & Zarraga show, however, 
these are so minute that they cannot credibly affect even questions of cell 
size. 

2. Basic equations : linear stability 
Our model consists of a uniform horizontal layer, 0 < x < d,  unbounded in the 

x and y directions, and containing a fluid of density p ,  kinematic viscosity v, 
thermal diffusivity K ,  and coefficient of volume expansion a. Its lower surface 
( x  = 0) is in contact with a rigid, thermally insulating, horizontal slab. I ts  upper 
surface is in contact with a rigid, conducting, plane which is maintained at a, 
constant temperature (which defines the zero point of our scale). Uniform sources 
produce heat in the layer which, in the absence of conduction, would cause the 
temperature of every fluid element to rise at  a constant rate, y. (Note that 
y = H/pc, in Tritton & Zarraga’s notation.) 

We use dimensionless variables. We will measure time, t ,  in units of d2/u,  length 
in units of d ,  but (nevertheless) velocity, u, in units of K / d  (and not v/d) .  We will 
measure temperature, T ,  from its zero on z = 0,  in units of yd2/K. We will denote 
by P and R the Prandtl and Rayleigh numbers 

V 

K V K 2  ’ 
P=-, R E -  

where g is the acceleration due to gravity. 
3-2 
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The basic equations governing the study are now seen to be, in the Boussinesq 

(2) 

(3) 

approximation, divu = 0, 

- + - u . grad u = -grad mi- V2u + RTI,, au i 
at P 

P-+u.gradT aT = V2T+1, 
at (4) 

where w is a dimensionless variable representing pressure, and 1, is a unit vector 
in the direction of x-increasing, i.e. upwards. The boundary conditions are 

DT=O,  on x = O ;  T = 0 ,  on x = l ;  ( 5 )  

u=O, on x = 0 and z =  1; (6) 
where D = a/ax. 

Steady solutions of (2) to (6) exist, of the form 

(7) = 0, T = T(O)=J= 2(1-x2), w = w(0) = R(lc+82-&3), 

where k is an arbitrary constant. These are called conduction solutions. If R is 
sufficiently great, steady solutions of the form 

* 0, T = TO(4 +B(x,y,z), w = w,(z)+I’I(x, y,x) (8) 

also exist in which the averages, (u), (0) and (I’I), of u, Band IT over the horizontal 
plane vanish. These are the convection solutions; the functions u, B and IT repre- 
sent the tessalated motions of convection, and To and w,, represent the corre- 
sponding conduction terms To) and w(O) as modifled by these motions. 

If u, B and IT are infinitesimal, it may be shown (see, for example, Chandrase- 
khar 1961, chapter 2) that (8) is of the form 

where To(x) = T(”(x), w ~ ( z )  = w@)(z). 
Here f(x, y) satisfies 

The wave-number, a, decides the horizontal scale of the convective motions; the 
type of solution to (12) selected decides their horizontal structure, or ‘planform’. 
For example, for convection in rolls of width n/a having axes in the y-direction, 
we must take f = 4 2  cos ax; convection in hexagons is represented by a plan- 
form which is the sum of those for three sets of rolls at  60” to each other. It may 
be noted that, by (12), the velocity (9) automatically obeys (2). 

By a process too familiar to bear repetition here, it may be shown from (3), 
(4), (9) and (11) that, irrespective of the solution to (12) selected, we have 

( D2 - ~ 9 ) ~  W = Ra2P, 

( 0 2  - a2)B = WDT,, 
(13) 

(14) 
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where, by (5) and (6), 

W=L)W=DB’=O on x = O ;  W = D W = F = O  on z = 1 .  (15) 

Note that, by (7) and (l l) ,  

The solution to (13) to (15), for given a,  poses an eigenvalue problem for R. The 
smallest eigenvalue, R ( a )  (say), decides the onset of convection for that value of a. 
The minimum R, of R ( a ) ,  which occurs at  a, (say), decides the critical Rayleigh 

DT, = -2. (16) 

2 4 6 8 
a 

FIGURE 1. The neutral stability curve. For each value of the wave-number, a, the figure 
gives the smallest eigenvalue, R, of (13) to (16). 

number and wave-number at which convection first occurs as R is increased 
gradually from zero. The problem of solving (13) and (14) for a general linear 
profile [which includes ( l 6 ) l  has been considered by Sparrow, Goldstein & 
Jonsson (1964), and by Debler (1966).t Unfortunately, however, they did not 

t Debler showed that the adjoint of the Sparrow, Goldstein, Jonsson convection prob- 
lem is the much-calculated problem of the onset of instability in Couette ilow in the case 
of a narrow gap. This analogy suggests that one might regard the present problem as being 
approximated by an averaged temperature gradient, /3, of yd/2K. This yields a critical 
classical Rayleigh number, p / 3 d 4 / V K ,  of +(2772) w 1400, which is roughly the reduction 
below 1700 one might expect in view of the difference in boundary conditions. I am 
grateful to Professor J. T. Stuart for these observations. 
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include conditions (15) in their discussion. We have therefore had to perform the 
calculations afresh, obtaining the curve R(a) shown in figure 1. It has a single 
minimum at 

corresponding, for the case of convection in rolls, to a horizontal semi-wavelength 
of 1.195d. As in the classical BBnard situation, R = O(a-2) as a+O, and R N a4 
as a+m. In  fact, numerical calculation shows that R N 4 0 5 7 . 7 3 ~ - ~ ,  as a+O. 
Straightforward asymptotic analysis shows that, in the case a -+ 00, convection 
occurs predominantly in a layer of thickness a-% adjacent to the upper surface. 

R, = 2772.28, U, = 2.629, 

3. Integral properties: the shape assumption 
We return to the finite-amplitude problem posed by (2) to (6). On making the 

substitution (8), it may be shown (cf. Paper 1, or Chandrasekhar 1961, appendix 
1) that, Iol (Buz)DTodz = - (17) 

and DT, = - + (ezlz), 

By (17) and (19) 

so’(ezlz)2dz = lo1 (eu,)zdz-~ol ((V8)2)dz.  

The shape assumption (Stuart 1958) is the supposition that, to an adequate 

(22) 
ARC e = __ e,, u = AU,, 

approximation, 

R 
where 8, and u, denote an arbitrarily normalized solution of the marginal solu- 
tion of the perturbation equations of 9 2. The equations (18) and (21) are satisfied 
by 19, and u,, and the factor R,/R in (22) ensures that 0 and u obey (18) automatic- 
ally. The remaining condition (21) then gives 

A’ = A(R- Rc), (23) 

where 

In classical BBnard convection, the shape assumption has been used to estimate 
the Nusselt number N ,  which is defined to be the mean heat flux through the 
convecting layer divided by the heat flux through the same layer when im- 
mobilized. In  the present situation, however, N is inappropriate since it is neces- 
sarily unity. The complementary quantity here appears to be a parameter, M ,  
defined to be the mean temperature of the bottom surface of the convecting 
layer divided by its temperature when the same layer is immobilized: 

J O  
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(In the classical BQnard situation, M is necessarily unity.) On the basis of the 
approximation (22) and (23), we see that 

(26) M = 1--(R-R,),  R 

where I’ is independent of the normalization of 0, and u, selected, and is given by 

r 

It is found that, for a = a,, 
r = 0.5994. 

For the remainder of this paper, we abandon assumption (22). We should note, 
however, that the theory to be presented obeys (19) and the very fundamental 
integral relations (17) and (18). 

4. The mean-field approximation 
We have already seen that, in marginal convection, (8) reduces to the form given 

in (9) to (ll), which involves only one (fundamental) wave-number, a. Having 
selected a value of a and a corresponding solution of (12), it is easily shown that, 
in finite amplitude convection, this fundamental harmonic generates, via the 
u.grad terms of (3) and (4), an infinite sequence of ‘overtones’ whose wave- 
numbers are simple multiples of a. For example, for convection in rolls, the se- 
quence of wave-numbers is a, 2a, 3a, 4a, ...; for convection in hexagons it is a, 
43a, 2a, $a, 3a, ,/12a, ,/13a, 4a ... (Platzman 1965).t Since viscosity becomes 
increasingly dominant as we progress to the right along the sequence, the 
amplitude of the harmonics must decrease ‘rapidly’. To illustrate this, we con- 
sider the case of convection in rolls in which u may be represented by a stream 
function, $, such that u = ( - a$/&, 0, a$/ax), and @ and T may be expanded as 

m m 

@ = C. $ s ( x )  sin sax, T = T , ( x )  cos sax. 
s=l s= 0 

In  table 1, the values of @* and T, are shown, not for the present situation, but for 
the (better-studied) case of classical BBnard convection. The units are those of 
the present paper, but the boundary conditions on T are: T = 0 on z = 0, and 
T = - 1 on x = 1 ; also, the y source of 5 2 is absent. Values are given for 0 < x < 
only, since those for 8 < z < 1 follow directly from them by symmetry. The case 

t In  the case of rolls, each term of the velocity series is poloidal, i.e. it can be repre- 
sented in the form (9) with its wave-number replacing a in (9) and (12). In  the case of 
hexagons, however, the velocity series contains toroidal terms in addition, with wave- 
numbers J7a, J13a, J19a, J2la ...[ A toroidal velocity is expressible in the form u = 
(Wag/ay, - Wag/ax, 0) where g(z, y) obeys (12) with the appropriate wave-number re- 
placing a.] I n  hexagonal motions, therefore, the z-component of vorticity isnon-zero (though 
weak). I n  the case of classical BBnard convection, Platzman showed that the dominant 
wave-number, a,  must lie above the neutral stability curve. In the present case, however, 
this will not be so. There will exist close to the curve of figure 1, a range of R in which 
sub-critical finite amplitude hexagonal solutions exist (Busse 1967). (I am grateful to Dr 
F. Busse for pointing this out.) This paper has, however, been concerned mainly with 
experiments a t  highly super-critical R.  
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considered is a = 3, P = 6.7 and R = 20,000( M 12R,). It will be seen that, as 
expected, II., and T, for any fixed x decrease rapidly as x increases. It is not known, 
at  the present time, whether similar series for hexagonal motions, or for the 
situations considered in the present paper, would converge so rapidly, but there 
is no obvious reason why they should not. 

(-- 

7 8 
Approximate 

1 

0.1 2.25 0.036 0.26 0.049 0.03 0.008 0.00 0.001 2.56 
0.2 6.61 0.124 0.67 0.109 0.07 0.018 0.01 0.002 7.63 
0.3 10.86 0.173 1.04 0.123 0.10 0.020 0.01 0.003 12.50 
0.4 13.78 0.121 1-30 0.080 0.12 0.013 0.01 0.002 15.80 
0.5 14.80 0 1.40 0 0.12 0 0.01 0 16.96 

( -  l)"+lT,(z) 

\ "  0 
z \  
0.0 0 
0.1 0.296 
0.2 0.480 
0.3 0.524 
0.4 0.519 
0.5 0.500 

1 2 3 4 5 

0 0 0 0 0 
0.151 0.013 0.022 0.011 0.006 
0.197 0.040 0.038 0.020 0.012 
0.166 0.044 0.052 0.020 0.017 
0.138 0.024 0.063 0.012 0.020 
0.129 0 0.067 0 0.020 

Approximate 
rL-7 

6 7 8 0 1 

0 0 0 0 0 
0.003 0.002 0.000 0.330 0.207 
0.006 0.003 0.001 0.492 0.255 
0.007 0.004 0.001 0.507 0.190 
0.005 0.004 0.001 0.402 0.148 
0 0.004 0 0.500 0.139 

TABLE 1. x-Fourier coefficients of stream function and temperature as functions of z 
(classical BBnard convection) 

Our basic approximation (cf. Paper I) consists in truncating Fourier ex- 
pansions such as (29) after their first; terms, i.e. we will suppose that, to an ade- 
quate accuracy, we may represent the solution we seek by (9) and (10). We do 
not, however, suppose that (11) holds, i.e. we allow for the modifications in the 
mean temperature profile created by convection. We term the resulting ordinary 
differential equations for W ,  3' and To 'the mean field equations', since this is 
what they are in the case C = 0. 

At first sight, the approximation just introduced appears to be inconsistent. 
Imagining a complete Fourier decomposition of the motions in 2, y and 2, one might 
ask why one should truncate the (x, y )  series of coefficients after their first terms 
while keeping (essentially) all the corresponding z-Fourier coefficients? For, at  
large R, it appears (Pillow 1949) that the boundary-layer thickness at the side 
walls of a convection cell is essentially the same as that at  its upper and lower 
faces; the rate of convergence of the (x, y )  coefficients should, then, be no greater 
than that of the z harmonics. On the other hand, it must be agreed that, at 
R = R,., our approximation exactly reproduces the perturbation equations?; the 

t As R-tR, + 0, the mean field equations give qualitatively correct results. For example, 
Busse (1967), examining the effects of deviations from the Boussinesq equations on classical 
BBnard convection, concluded that the error in the heat flux was only 4% for hexagons 
and 1 % for rolls (rigid boundaries). 
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double Fourier series for ua and 6’ in the marginal case each possess one term in 
the (x, y )  ‘direction’, but aninfinitenumber (cf. Jeffreys & Jeffreys 1946, $14.062) 
in the z ‘direction’. It may, therefore, be not unreasonable to suppose that, a t  
‘intermediate’ values of R, the double Fourier series will converge far more 

2 

1 13.75 0 
2 0 - 0.152 
3 - 1.65 0 
4 0 0.045 
5 -0.50 0 
6 0 0.010 
7 -0.20 0 
8 0 0.002 
9 -0.09 0 

10 0 0.001 
11 -0.05 0 

\\S 0 

t \  

0 -0.500 - 
1 0.168 
2 0 
3 0.151 
4 0 
5 0.072 
6 0 
7 0.034 
8 0 
9 0.018 

10 0 
11 0.012 
12 0 

3 

1.32 
0 

- 0.12 
0 

- 0.04 
0 

- 0.02 
0 

- 0.01 
0 

- 0.01 

1 2 

-0.145 0 - 
0 0.031 
0.012 0 
0 - 0.026 
0.050 0 
0 - 0.006 
0.031 0 
0 0.001 
0.016 0 
0 0.001 
0.008 0 
0 0.000 
0.006 0 

i s .  t 

4 5 

0 0.12 

0 - 0.01 
0.015 0 
0 0.00 
0.006 0 
0 0.00 
0.003 0 
0 0.00 
0.002 0 
0 0.00 

-0.120 0 - 

TS, t 
3 4 

-0.042 0 
0 0.017 
0.027 0 
0 -0.011 
0.004 0 
0 - 0.003 
0.003 0 
0 - 0.001 
0.002 0 
0 0.000 
0.001 0 
0 0.000 
0.001 0 

6 7 8 

0 
.0,020 
0 
0.003 
0 
0.001 
0 
o*ooo 
0 
0.000 
0 

0.01 0 
0 - 0.001 
0.00 0 
0 0 ~ 0 0 0  
0.00 0 
0 0.000 
0.00 0 
0 0.000 
0.00 0 
0 0.000 
0.00 0 

5 6 7 

-0.013 0 
0 0.005 
0.009 0 
0 - 0.004 
0.002 0 
0 - 0.001 
0.001 0 
0 0.000 
0.000 0 
0 0.000 
0.000 0 
0 0.000 
0.000 0 

- 0.003 
0 
0.002 
0 
0.001 
0 
0.000 
0 
0.000 
0 
0.000 
0 
0.000 

TABLE 2. (z, z)-Fourier coefficients of stream function and temperature (classical BAnard 
convection) 

rapidly in the ( x ,  y) direction than in the z direction. We may offer, in confirma- 
tion, the following example taken from the solution to the full non-linear 
equations of classical BBnard convection in rolls. Writing 

m m 

@ = qks, sin sax sin tn-x, T = C T,, cos sax cos t m ,  ( 30) 
s,t=l s,t=O 

we find, in the case a = 3, P = 6-7 and R = 20,000, the values of $s,t and q.,, 
shown in table 2. It will be observed that the ratio of successive terms in 2s or 
2s+ 1 for any fixed t is ultimately of the order of 0.1; the ratio of terms in 2t or 
2t + 1 for fixed s is ultimately, however, of order 0.5. As further corroboration 
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we show, in the final column of table 1, the values of $1, To and Tl according to the 
mean-field theory. These should be compared with the corresponding (exact) 
results for $1, To and TI in table 1. (The approximate value obtained for N was 
3.51; this should be compared with the exact value of 3-13.) 

We now return to the internal heat generation problem. The derivation of the 
mean field equations follows too closely that given in Paper I to be repeated here. 
They are found to be [cf. Paper I, equations (49) to (54)] 

(D2 - a2)2 W = Ra2P + (C/P)[ W D ( P  - a2) W + 2 0  W(D2 - a2) W ] ,  (3 1) 

( 0 2 -  a2)P = WDT, + C[PDW + ZWDP], (32) 
DTo= - z+PW,  

where 
(33) 

W = D W = D P = O  on z = O ;  W = D W = P = O  on z = 1 ;  (34) 

and C denotes the coupling constant ( f 3 ) / 2 ,  which takes the value 1/46  for 
hexagonal convection and is zero for convection in rolls. We may note that, 
when C = 0, (31), (32) and (35) are identical with (13) to (15), though, of course, 
(33) differs from (16). From (33) we have [cf. (20) and ( 2 5 )  above] 

To = & ( l - Z ” -  PWdz, L1 
M = 1 - 2  PWdz. so’ 

(35) 

It may readily be verified that solutions to (31) to (36) automatically obey the 
integral requirements of $ 3  for all C. For C = 0, they are the usual mean-field 
equations (cf. Herring 1963). 

We will consider the solutions to (31) to (36) in three? distinct cases; viz. 
convection in rolls, convection in hexagons with motions rising in the centre of 
each cell, and convection in hexagons with motions descending at  each centre. 
We will refer to these as rolls, up-hexagons and down-hexagons, respectively. 
In  figures 2 and 3, the forms of W(Ra2)-g, P(Ra2) and To are shown for one value 
of R for the roll and both hexagons, and in the two limiting cases R+R,, and 
R-tco (for rolls).$ It will be noted, in each case, that the solutions are asym- 
metric with respect to the mid-plane of the layer. 

The asymptotic case R + 00 for convection in rolls (C = 0) may be solved easily 
by the analysis instituted by Roberts (Paper I) and completed by Stewartson 
(appendix to Paper I). The boundary layer at z = 1 is essentially of the same type 
as occurred at  both surfaces in the classical BBnard situation; its thickness is of 
order (Ra2 log Ra2)-*. The boundary layer at z = 0 is of different structure; its 
thickness is of order (Ra2)-*. In  evaluating 

t In the corresponding BBnard case, these reduce to two, since there is no theoretical 
distinction between up and down hexagons: see discussion below equation (55) of Paper I. 

$ These results and those reported below were obtained on the KDF9 computer of the 
University of Newcastle upon Tyne using a Chebyshev collocation method (of. Wright 
1964). 



Convection with internal heat generation. Theory 43 

[cf. (31) and (36)], we see that the dominant contribution arises from the z = 1 
boundary layer, which yields 

As Roberts has shown (Paper I), these results have to be modified if a = O(R*). 
M N 2-221(Ra2log Ra2)-*. (38) 

0.03 

% g 0.02 

0.01 

30 
5% 

rq 
8 20 

10 

z 
FIGURE 2. Illustrative solutions of the mean field equations. The figure shows W and F 
for (left to right): the marginal csnse a = ac, R = R,+O; a roll in the case R = 21,000, 
a = a,; an up-hexagon in the same case (P = 6.7); a down-hexagon in the same case; a 
roll in the limit R + co. 

\ 

Down-hexagon 
R=21,000, a=2,629 

P=67 

B I G ~ E  3. Illustrative solutions of the mean field equations. The figure shows To for (left 
to right) : a roll in the cam R = 21,000, a = a,; an up-hexagon in the same case (P = 6.7); 
a down-hexagon in the same case. 
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5. The preferred modes 
In  this section we report on the results obtained by applying a theory of the 

preferred mode developed in Paper I to the present problem. We will not, how- 
ever, repeat the formalism in detail since the modifications which have to be made 
to the theory of Paper I are relatively minor, and consist mainly in replacing the 
form for DT, appropriate to the BBnard situation [cf. Paper I, equation (53)] by 
(33) above, and the condition F = 0 on z = 0 of the BBnard case by the condition 
DF = 0 on z = 0 appropriate here. 

6 h / 

4 

a’ 

2 

2 4 6 
a 

FIGURE 4. Stability diagram for convection in rolls at R = 7000, P = 6.7. On the two 
curves shown, the perturbation of steady finite amplitude convection in rolls of wave- 
number a by a pattern of wave-number a‘ is marginal. Elsewhere, the steady motion is 
stable or unstable, as indicated. The preferred mode is located at the intersection of the 
curves. 

We add, to a basic finite-amplitude solution (S), perturbations of the form u’ 

(39) 
and O f ,  where 

The perturbation planform, f ’, has a different structure or different wave- 
number a’ from f, or both. (If a‘ + a,  the growth of the perturbation depends on 
a’ but not on the structure off‘.) The normal modes of largest growth rate t ~ ,  are 
sought from the linear homogeneous equations governing W’ and F‘. If this 
growth rate is positive, we conclude that the steady state ( W ,  F )  selected is 
unstable, and could not be attained in practice. If the growth rate is negative 
for all choices of f’ , we presume it is stable. There is no a priori theoretical reason 

8’ = F’(z,t)f’(x,y), etc. 
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why there should be even one stable mode or why, if there is one, it  should be 
unique. 

First consider the perturbation of rolls by patterns of a different wave-number 
(a’ + a). The growth rate, u, will be a function of a and a‘, i.e. g = c ( a ,  a’). It is 
easily shown, in fact, that u + 0 as a‘ +a. In  the theory given here, it  is always 
found that u is real. A typical situation is shown in figure 4 for R = 7000, P = 6.7. 
On the two intersecting curves shown, u is zero. (One of these is, in fact, the 
straight line a = a’.) Between these curves lie regions of stability and instability, 

R 
Rc 

3,000 
4,500 
7,000 

10,000 
14,000 
18,000 
25,000 
35,000 
45,000 
55,000 
60,000 
70,000 

az, 
2.6292 
2.1462 
2.6670 
2.7144 
2-7622 
2.8128 
2.8534 
2.9102 
2.9726 
3.0224 
3.0984 
3-1373 
3.3205 

To 
0.50000 
0.46897 
0.38399 
0.31376 
0.27352 
0.2 4 2 8 4 
0.22415 
0.20310 
0.18458 
0.17226 
0.16692 
0.15914 
0.15 196 

W(+) 
0~0000 
0.7815 
3.5355 
5.6299 
7.4848 
9.4862 

11.1911 
13.7552 
16.8599 
19.5568 
22.0951 
22-805 
25.936 

F(0) 
0~00000 
0.02442 
0.04534 
0.04273 
0.03723 
0-03199 
0.02850 
0.02458 
0-02123 
0.01909 
0-01740 
0.01670 
0.01511 

TABLE 3. Roll patterns : preferred wave-numbers 

a(R + E l )  

o*ooo 
- 0.032 
- 0.392 
- 0’965 
- 1.776 
- 10.547 
- 10.707 
- 10.967 
- 

as shown. For all values of a, except one, there exists a range of values of a’ for 
which u > 0, i.e. rolls of these a are unstable. For one value of a ( M 2.71) at which 
the curves cross, the roll is (neutrally) stable, i.e. u < 0 for all a’, with equality 
only if a’ = a. A method by means of which this value, ap, of a can be located 
directly, without the necessity of constructing a figure such as figure 4, is given 
in Paper I. When applied to the present problem it gives the results listed in table 
3. It should be emphasized that, although in general u depends on P, the location 
of ap is entirely independent of Prandtl number. 

Next consider the perturbations of hexagons by patterns of a Merent  wave- 
number (a‘ $. a). Again the growth rate u(a, a’) appears to be real. In  this case, 
however, it does not tend to zero as a’ +a. Two typical situations, both for down- 
hexagons, are shown in figure 5 for R = 7000, and in figure 6 for R = 10,000 
(P = 6.7). For the former of these, there exists, for all a, a band of wave-numbers 
a’ for which u > 0. All down-hexagons are therefore unstable a t  R = 7000. 
For R = 10,000, however, there is a range a1 < a < a, of a in which u < 0, i.e. 
for which the hexagons are completely stable. In  fact, except at  the end-points 
of this range, g < 0 for all a’. This contrast with the neutral stability of the rolls, 
suggests that these patterns would have more permanence than rolls in any 
practical situation. As R increases, the band [al, a,] of stable a widens, as shown 
in figure 7, a figure curiously reminiscent of the neutral stability curve (figure 1). 
It appears from this figure, that down-hexagons are, on the present theory, stable 
for all R greater than 8750 (approx.). Some details concerning the down-hexagons 
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Positive growth rate 4 t  

I I I I I 
2 4 6 

a 

FIGURE 5. Stability diagram for convection in down-hexagons at R = 7000, P = 6.7. On 
the two curves shown, the perturbation of steady fmite amplitude convection in down- 
hexagons of wave-number a by a pattern of wave-number af is marginal. Between the 
curves, the perturbation grows. 

Negative 

rate 

1:: growth 

a 

FIGURE 6. Stability diagram for convection in down-hexagons at R = 10,000, P = 6.7. 
On the two curves shown, the perturbation of steady finite amplitude convections in 
down-hexagons of wave-number a by a pattern of wave-number a' is marginal. Between 
the curves, the perturbation decays, i.e. down-hexagons me stable for a h i t e  band of 
wave-numbers a. 
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3 c 

1 

Down-hexagons 
unstable 

a 

FIGURE 7. Overall stability diagram for down-hexagons. The figure, which is a composite 
of many figures of the type illustrated in figure 6, shows for each R the range of values of a 
within which stable down-hexagons exist. 

R 
7,000 
8,000 
9,000 

10,000 
14,000 
21,000 
28,000 

-To 
0.31493 
029743 
0.28332 
0.27165 
0.2 3 9 5 7 
0.20926 
0.19189 

- wca, 
5.9095 
6.6072 
7-2459 
7.8388 
9.8956 

12-7822 
15.1661 

TABLE 4. Hexagonal patterns for a 

- W O )  u ( H  +R) a1 a2 

0.053635 - 0.347 - - 
0.052735 - 0.456 - - 
0.051539 - 0.576 2.82 3.03 
0.050219 - 0.705 2-71 3.20 
0.045149 - 1.321 2.57 3.61 
0.038639 - 10.778 2.52 4.07 
0.034368 - 11.009 2.51 4.38 

= 3: motion downwards in centre (P = 6.7) 

--To 
0.33563 
0.24583 
0.23957 
0.25110 
0.27656 
0.32340 
0.39211 
0 * 4 8 6 0 3 

- w(:) 
3.2516 
7.3546 
9.8956 

10.7518 
10.2304 
8,7381 
6.4156 
2.1326 

- - B ( O )  
0.125640 
0.070946 
0.045149 
0.032090 
0.023431 
0.016231 
0.009413 
0.002057 

U ( H + R )  

- 0.049 
- 0.656 
- 1.321 
- 1.342 
- 1.033 
- 0.668 
- 0.376 
- 0.140 

TABLE 5. Down-hexagons (P = 6.7, R = 14,000) 
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are listed in tables 4 and 5 including the limits al(R) and a,(R) of a between which 
stable down-hexagons exist. 

We have also examined the stability of up-hexagons by patterns of a different 
wave-number, and have, for every a and R for which we have performed the 
calculation, invariably found that CT is positive over a wide band of a’. 

Finally, we consider the perturbation of rolls (or down-hexagons) by hexagons 
(or rolls), of the same wave-number (a’ = a). In  this case, there seemed to be some 
evidence that, as R increases, the dominant normal mode of the (W’,F‘) per- 
turbation becomes increasingly oscillatory in character. Indeed our numerical 
procedure, which could only locate normal modes of real cr, gave unexpected 
results between R = 14,000 and R = 21,000 for rolls (a = up) ,  and between 
R = 10,000 and R = 14,000 for down-hexagons a = 3; see tables 3 and 4. We 
interpret the apparent discontinuities in CT(H --f R) and CT(R -+ H )  , (the growth 
rates for roll perturbations superimposed on hexagonal states, and for hexagonal 
perturbations superimposed on steady roll convection) as follows. We suppose 
that, for the larger values of R, our numerical procedure has located the largest 
growth rate amongst the normal modes possessing real CT, probably the one with 
the third greatest real part (since two real roots must coalesce before the complex 
conjugate pair is formed); we conjecture that the modes with greatest growth 
rate are of complex CT, and therefore not located by our search, but this is an 
open question. 

Summarizing our theoretical results, we have found (for water, P = 6.8) that, 
in the range 2772 < R < 8750 (approximately), there is only one possible convec- 
tion pattern, viz. rolls of a certain definite wave-number, ap (see table 3); these 
are marginally stable.? For R > 8750, there exists, in addition, a range (al, a,) of 
values of a, whose bounds a, and az depend on R (and P) in which motion in 
down-hexagons is possible; since these are completely stable (as distinct from the 
marginal stability of the roll solution), we conclude that these would be more 
likely to be observed in practice. There is no method, on the present theory, of 
deciding which (if any) of the values of a in (al, a,) is preferred. 

Tritton & Zarraga have made no effort to establish the critical value 2772 for 
marginal convection, nor have they studied in detail convective motions in the 
range R < 12,000; the one observation they report (for R M 7000) is visual, and 
does not confirm the theoretical expectation of convection in rolls. It may be 
observed, however, that for R = 12,000, the smallest for which they present 
photographs, there is some evidence for a roll-like structure in addition to the 
more obvious hexagonal pattern. A more serious discrepancy lies in the fact that 
the wave-numbers of the hexagonal patterns they observe are definitely to the 
left (a  < a,) of the theoretical curve shown in figure 7: they are, then, unstable on 
our theory. Moreover, even supposing that a refinement of the present theory 

-f I am grateful to Dr F. Busse for pointing out that, according to  his expansion 
method, the preferred mode of convection near critical should be hexagonal; in fact, if 
R. Krishnamurti’s (1967) work in a similar situation is a guide, they will be up- 
hexagonal. If  this is the case, there will exist a band of R in which rolls only are stable 
(Busse 1967), as, indeed, we have concluded here. The main difference will be that this 
band will not extend from 8750 (approx) down to R,, but only down to an R a little 
above R,. 
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would disclose that a, should be smaller, it would be difficult to account for the 
preference for smaller wave-numbers of the band (al, a2). 
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